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INTRODUCTION

Cryogenic wind tunnels have become important tools for high Reynolds number
research. (See ref. 1 by Kilgore et al.) A cryogenic wind tunnel (T'2) has been
built at the Toulouse Research Center, Toulouse, France. (See ref. 2 by Blanchard,
Dor, and Breil.) The 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT), built as a
pilot facility, is at the Iangley Research Center. The National Transonic Facility
(NTF) at the Langley Research Center (see ref. 3 by Fuller), which is expected to
become operational in 1983, is a closed—circuit, fan-driven, continuous~flow, pres-
surized cryogenic tunnel operating at pressures up to 9 atm (1 atm = 101.1 kPa) and
having a 6.25-m%-area slotted test section that is 7.6 m in length. The facility
will operate at temperatures ranging from ambient down to about 100 K. ILiquid nitro-
gen (LN2) sprayed into the tunnel upstream from the fan nacelle performs three
cryogenic-cooling functions: (1) initial cooldown, (2) steady-flow temperature requ-
lation by balancing the energy added by the fan, and (3) primary temperature control
in passing from one steady-flow condition to another. Total-pressure control is
accomplished by venting tunnel gaseous nitrogen (GNZ) to the atmosphere. Both LN,
and GN2 flows are regulated by means of servo-control valves. Fan-motor speed deter-
mines coarse Mach number variation, whereas fan inlet quide vanes furnish fine ver-
nier Mach number variation. The tunnel shell has interior thermal insulation with an
aluminum inner liner. This limits atmospheric-heat penetration to a negligible
amount and reduces energy consumption. See figure 1 for a schematic diagram of the
NTF.

Inlet guide
vanes

Fan-drive speed

Fan section control

GN, vent — |~ LN2 injection

Cooling coil

! Test ti !
r=—Test section —am

Figure 1.- Schematic diagram of the National Transonic Facility (NTF).

The high cost of liquid nitrogen makes efficient operation of a crvogenic tunnel
important. In order to minimize operating cost, it is necessary that such a facility
be equipped with automatic controls which perform the following functions:

(1) Maintain steady flow at the most efficient setting during test dwell.



(2) Drive the system along the most efficient transition path from one steady-
flow setting to the next as quickly as possible.

Modern control-system synthesis techniques require that the dynamic process to
be controlled be modeled analytically either in a discrete formulation as a system of
difference equations or in a continuous formilation as a system of differential equa-
tions in state variable form. The thermodynamic and fluid-dynamic processes in the
wind tunnel are described by the three-dimensional Navier-Stokes equations which
require numerical solution. The complexity of this three~dimensional formulation is
beyond the scope of modern distributed-parameter control synthesis techniques, and
numerical solution of the equations requires lengthy, expensive computation. Conse-
quently, the control-system designer must resort to a simplified approach, such as
segmentation of the process into a set of lumped parameter stations which may then be
treated as a high-order multivariable system with time delays. Because the accuracy
of such an approximation is limited, a need exists for a dynamic model whose accuracy
is adequate for control-system design and performance evaluation, but whose numerical
solution will execute on a digital computer at reasonable speed and cost. The one-
dimensional distributed-parameter dynamic model described herein is intended to

satisfy this need.

SYMBOLS
A diffuser area ratio
Ag projected-strut frontal area, m?
AT test~section cross-sectional area at throat, m2
a local speed of sound, m/sec
B body force vector in three-dimensional space, N
b = léi—l (see eq. (A14))
Ch drag coefficient
Comx variable model-blockage flow coefficient
Ce flow coefficient for reentry mass flow
CorF slot (plenum test-section) pressure-difference flow coefficient,
kg—mz/N-sec
Cr heat-transfer correction.factor
C; variable defined in equation (93)
Cx artificial-viscosity coefficient
Cxm boundary-layer flow coefficient
M specific heat of metal liner, kJ/kg-K
cp specific heat of gas at constant pressure, kJ/kg-K



c specific heat of gas at constant volume, kJ/kg-K

v

Dt,n vector difference defined in equation (95)

d tube diameter, m

di,n difference defined in equation (94)

EPL plenum internal energy, kJ

e internal energy, kJ/kg

F vector defined in equation (76)

Fg surface force vector in three-dimensional space, N
f function

G vector-function relation of fan

GN, gaseous nitrogen

H vector defined in equation (77)

h enthalpy, kJ/kg

hN total enthalpy of LN,, kJ/kg

jt momentum-flow rate per unit length, kg/sec

K diffuser loss factor

KH diffuser correction factor defined in equation (37)
K6 constant defined in equation (45)

k thermal conductivity of gas, kJ-m/K-sec

Ky diffuser correction factor defined in equation (34)
L length, m

LN, liquid nitrogen

M Mach number

m mass, kg

m' mass-flow rate per unit length, kg/m-sec

N number of quantized stations

Ny, Prandtl number

NRe Reynolds number



vector defined in equation (96)

static pressure, atm (1 atm = 101.1 kPa)
corrected total preséure

external heat flow into control volume, kJ
heat-flow rate, kJ/sec

heat-flow rate per unit length, kJ/m-sec

heat transfer from liner, kJ/m-sec

gas constant, kJ/kg-K

constant defined in equation (23)

wall resistance, km3/kJ

diffuser-inlet equivalent radius, m

fan compression ratio

diffuser pressure ratio defined in equation (33)
corrected diffuser pressure ratio

surface vector in three-dimensional space, m2
entropy, kJ/K

gas temperature, K

liner temperature, K

time, sec

liner thickness, m

velocity vector

heat~transfer coefficient, kJ/km3
artificial-viscosity vector

velocity, m/sec

state vector defined in equation (73)

value of state vector V at station x, and time
specific volume, m3/kg

volume, m3

tx



W external work done by control volume, kJ

w mass-flow rate, kg/sec

wg boundary~layer component of slot-flow rate, kg/sec
WM model-blockage component of slot-flow rate, kg/sec
We extracted component of reentry mass-flow rate, kg/sec
Vg GN,—vent flow rate, kg/sec

Wy LN,~-injection flow rate, kg/sec

Wgg supersonic component of slot-flow rate, kg/sec

Yy average test~-section mass-flow rate, kg/sec

bid spatial coordinate, m

o inlet-guide-vane position, deg

Y ratio of specific heats

A differencing increment

8 increment used in equations (33) and (39)

&* boundary-layer displacement thickness, m

€ increment used in equations (38) and (39)

nF fan efficiency

20 total diffuser expansion angle, rad

61 boundary-layer momentum thickness, m

B coefficient of viscosity, N—sec/m2

Y fan speed, rpm

P density, kg/m3

Py liner density, kg/m3

c nbrmal stress, N/m2

w cross—-sectional area, m2

Subscripts:

DM ' model blockage

E slot exit (plenum test section)



EX test-section exit

F fan outlet

G GN, (gaseous nitrogen)

N LN, {ligquid nitrogen); tunnel outlet, for example, in equation (74)
ORF plenum test section

PL plenum

R flow loss

RE reentry

s smoothing

TS test section

t total value

XX x-component of stress of force
Superscripts:

- average value
predicted value
corrected value
Special symbol:

v vector del operator

A dot over a symbol denotes a derivative with respect to time.

DEVELOPMENT OF ONE-DIMENSIONAL MODEL
General Assumptions

The wind tunnel is modeled as a one-~dimensional tube of varying cross-sectional
area, in which the flow is assumed to be uniform across every cross section. Con-
sequently, rotational effects and mixing caused by turns in the tunnel are neglected.
In addition, longitudinal mixing caused by diffusion and turbulence is not modeled.
Although viscous shearing stresses are neglected, frictional momentum losses at the

walls are included.

Thermodynamic properties are computed by means of ideal-gas laws. Real-gas
effects, important at low temperatures, could be readily included. Heat transfer is
assumed to occur only between the gas and the tunnel inner liner; heat penetration
from the outer shell through the insulation to the liner is neglected. Liquid-



TS

|
)

nitrogen evaporative effects on total pressure, which are observed primarily at the
lowest temperatures, have not been considered.

The tunnel fan is represented as an algebraic functional relationship with no
inherent flow dynamics. Thus, the fan model is instantaneous, exhibiting no time
delay. Inlet-guide-vane actuator dynamics are included. The fan model determines
the functional relationships between tunnel inlet and outlet flows, which effectively
closes the tunnel circuit.

The plenum is modeled as a lumped volume attached to the distributed test
section. All external processes, including actuators and automatic controllers, are
modeled as lumped-parameter dynamical systems. The numerical solution of the set of
ordinary differential equations which describe the lumped-parameter processes is
synchronized in time with the numerical solution of the partial differential equa-
tions of flow. This synchronized combination of one~ and two-dimensional systems is
well-suited for the CDC' CYBER 203 vector-processing digital computer (ref. 4) on
which the solutions are obtained.

Derivation of One-Dimensional Flow Equations
The three-dimensional equations of fluid flow in integral form are applied to a
differential element of a one-dimensional tube of varying cross-sectional area in
order to derive a one-dimensional system of partial differential equations analogous
to the three~dimensional Navier-Stokes equations. The three basic conservation laws,
expressed in vector notation (ref. 5), are given as follows:

(1) Continuity:

JpU.as+-g€fpdu=o (1
S v

(2) Linear momentum:

prUOdS+%_:JpUd\)=FS+deU (2)
S v v

(3) Energy:

L(et+%>pU'dS+% Uetpdu=%%-% (3)
where
p density of gas
U velocity vector of mass flow

Tepe: Registered trademark of Control Data Corporation.



S surface vector of volume

v volume

Fg surface force vector

B body force wvector

p static pressure

ey total internal energy of gas

Q external heat flow into control volume
w external work done by control volume

By referring to figure 2, consider an incremental element of tube of length Ax
with flow entering at x4 and exiting at x,.

“
“
p1 p2
uy Uy
AX el ———

Figure 2.~ Elemental flow volume V.

The inviscid one-dimensional form of equations (1), (2), and (3) (ref. 6) is,
respectively,

0 0 _

Sg(pw) + Bg(puw) =0 (4)
0 d 2 _ . dw

-a—t( puw) + a( pu w + pw) = p ax (5)



and

e} e} _
Eg(etpw) + ax(etpuw + puw) = 0 (6)

where w is the cross-sectional area of the tube and u is stream velocity.

Equations (4), (5), and (6) are augmented to account for external mass,
momentum, and heat transfer, respectively, into the element of volume. Let m',
j', and q' denote mass-flow rate, momentum~flow rate, and heat-flow rate per unit
length, respectively, into the element of volume. The surface integral in equa-
tion (1) for conservation of mass with mass flow into the element of wvolume becomes

fpu'ds=9-£%;i)Ax-m'Ax : (7)
S

so that equation (4) becomes

|
5‘

3 o
A PW + F—(puw) (8)

Similarly, the addition of momentum flow 3j' Ax and heat flow q' Ax into the
element of volume results, respectively, in the equation for conservation of momentum

-

= 3!
Pt 3 (9)

0 0 2

Bf(puw) + ax(pu W + pw)
and in the equation for conservation of energy

2 (e, pw + (e puw + puw) = q' (10)

ot St ox - otP p d

Equations (8), (9), and (10) are in the form employed by Carriére (ref. 7) in a
dynamic analysis of an injector-driven wind tunnel that was solved by means of the
method of characteristics.

In the present study, it is desired to account for heat transfer within the gas
due to gas thermal conductivity. From Fourier's law of heat conduction, it follows
that the rate of heat transfer through surface S into volume y is

49 =—kaT-dS (1
S

dt X

where k 1is the thermal conductivity and lk denotes the component of heat transfer
due to gas thermal conductivity. Because gas-to~-gas heat transfer does not occur



along the outer surface of the surface integral, equation (11) is evaluated only at
surfaces Wy and wo (fig. 2) so that

) |y, 20y, 27 _2 (ot
dtIk kw, 3% = K@y 3% ax(k‘” bx) Ax (12)

The equation for conservation of energy (eqg. (10)) then becomes

o oT 0 — '
6;<?tpuw + puw - kw-g;) + Sf(etpw) = q (13)

In this analysis, it is desired to consider the effects of fluid viscosity. The

normal stress Oyx for one-dimensional flow is (ref. 8)
_ 4 du
%x T3 Hax (14)

where  1is the coefficient of viscosity. In the present one-dimensional approxi-
mation, shearing stresses are neglected. The surface force Fxx at points X4
and Xq (see fig. 2) due to normal viscous forces is of the form

u%w (15)

Lo ]

]

&

]
Wi

Consequently, the equation for conservation of momentum (eq. (9)) then becomes

d o (2 _4 tu)l dw, o,
EE(puw) + Eg(éu w + pw 3 Bw 6x) P I + 3 (16)

Empirical momentum losses obtained from data reported by Rao (ref. 9) will be
introduced through the j' term.

The rate of flow work done at surfaces wq and Wy by the normal force Fxx
in equation (15) is

xx| _ _ 4 ou
at = Fex * Ul = 3 BO0 3% (17)

The energy equation for viscous flow with heat addition and thermal conduction is

> or _ 4 du) , @ m o
&(etpuw + puw - kw %~ 3 buw &> + Bz(etpw) =q (18)

10
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Equations (8), (16), and (18) comprise the complete one-~dimensional partial dif-
ferential equations of flow that approximate the three-dimensional Navier-Stokes
equations.

Heat Transfer Between Gas and Tunnel Wall

The one-dimensional time-dependent equations of flow developed in the preceding
section include gas=-to-gas heat-transfer effects. It will be found that heat trans-
fer between the gas and the shell of the tube, corresponding to the wind-~-tunnel metal
liner, is of primary importance. Iet the rate of heat transfer from the liner to the
gas (in joules per second per unit length) be denoted by qé, the metal temperature
by Ty, the gas temperature by T, and the heat-transfer coefficient by Upe For an
annulus of tube of diameter d, the heat-transfer rate is

= Tr,d(TM - ‘I‘)UT (1?)

An empirical relationship for U; given by McAdams (ref. 10) is

U o 026 K 08 N0.4+Rw (20)
- Re Pr
where
k thermal conductivity of gas
Npe Reynolds number
NPr Prandtl number
Ry wall resistance

It has been found that a heat-transfer correction factor Cr is necessary to account
for the additional surface area in the nacelle and turning-vane sections. The factor
is employed as a multiplier so that equation (19) becomes

= TCd(TM - T)UTCR (21)

Consider next the tunnel inner~liner temperature dynamics. Heat transfer from
the liner to the gas occurs in accordance with equation (21). Iateral heat transfer
within the liner from warmer to cooler regions is neglected. Consequently, the rate
of change of the liner temperature %M is

. (T - T,)U,
¢ - MT (22)

M cMRD

11



where ¢y is the specific heat of the liner material and

Ry = Puty (23)

where is the liner density and ty 1is the liner thickness. Equation (22) is
employed as the governing equation for Ty.

ESTIMATION OF FLOW LOSSES

Introduction of Losses Into Equations of Flow

In the one-dimensional equations of flow, the viscous shear effects at the
tunnel walls are neglected. However, frictional effects, especially in the test
section and diffuser section of the wind tunnel, are significant and must be
accounted for. According to Rao (ref. 9), nearly 60 percent of the total aerodynamic
loss at Mach 1 occurs in these two sections. Since, of course, energy is conserved
in the test section and diffuser, the "total energy loss" to which Rao refers is a
loss in available energy, which is manifested as an increase in entropy. The entropy
gradient at steady flow ds/dx, obtained in the appendix in equation (A23), is given
by

2
ds R u . . '
—— I —— — - -+
dx  wap <2 h)m W a'f >0 (24)

Because of the assumption that the tunnel liner is perfectly insulated, external
heat transfer q' equals zero for steady flow. Furthermore, mass transfer term m'
is -zero everywhere except for GN2 and LN2 transfer. Therefore, the increase in
entropy must be due entirely to a momentum loss 3j' so that

j*' < 0 (25)

The steady-flow expression for the gradient of total pressure given in equation (A18)
is

dx

dp -1 y-1
t. 1 Yy - 1,2 o2 Y- 1,2 ' - 2 L
w(‘ + M) j 2w(1 + 5 M) um' + (v 1M (q + 2um (26)

With m' and g' both zero, equation (26) becomes

ponr

dp Y-

—t_1 Y - 1 y2 o

dx w(1 t 3 M) J (27)

12
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and because j' is negative, dp,/dx is negative. Rao (ref. 9) furnishes empirical
relations for determination of total-pressure losses in the test section, in diffuser
sections, at turning vanes, at cooling coils, and in the strut section of the NTF
wind tunnel. With Rao's relations, dpt/dx can be determined, and 3j' may be
obtained from equation (27) for each of the tunnel sections as

_ 1-y/dp .
j* = m(1 + 1——2—1 M2> (——t> (28)
R

where (dpt/dx)R is the total-pressure gradient due to flow losses obtained from
Rao's relations. This value of j' 1is entered into the dynamic equations for
unsteady flow, and dynamic effects in Jj' are neglected.

Calculation of Diffuser losses

Total-pressure loss Apt along the length of a diffuser is given empirically by
the equation (ref. 9)

2

bpy 2Py 5 " P, = K(1 - %;) (P 1 = Pq) (29)
where
Ap diffuser area ratio
K diffuser loss factor
P, 1 total pressure at inlet
P4q static pressure at inlet
Pt,2 total pressure at outlet

Studies by Rao (ref. 9) and Henry et al. (ref. 11) show that for values of
total diffuser expansion angle 26 1lying between 4° and 10°, the diffuser loss
factor K depends on the ratio of the inlet boundary-layer displacement thickness
6* and the diffuser-inlet equivalent radius R4. For values of 6*/R1 less than
0.030, K is well approximated by the relationship

&*
K = 0.075 + S.SB-E— (30)

1

Substitution of equation (30) into equation (29) gives

1\ &* -
Apt = (Pt,1 - p1)<1 - K;) <0.075 + 5-88'5;) (31)

13



Figure 3 shows a comparison of the diffuser pressure ratio

Ty = Py, 1/Py,2 (32)

LIO[-
O Measured values
1.08 - Computed curve
0]
h:l:
=3
T 106
ol
v
&
o lLoal
[«b)
3
=)
1.02 +
1.00 ) | L '
0 2 4 6 8 1.0

Mach number

Figure 3.- Comparison of computed and measured diffuser pressure loss in
the Langley 0.3-Meter Transonic Cryogenic Tunnel.

computed by using equation (31), with experimental values obtained by Rao (ref. 9)
in the Langley 0.3-Meter Transonic Cryogenic Tunnel over the Mach number range from
0.2 to 1.0. Agreement is good up to a Mach number of 0.8, above which the computed
values of ry are too small. The ratio Cys being nearly equal to 1.0, may be

expressed by
r.=1+28§ (33)

where & 1is a small increment and 0 < & < 0.061, as computed from the experimental
data. Because the values of y computed by equation (32) are too small, a correc-
tion factor to be applied to ry can be defined as

- '
Ky = Pe,2/Pt, o (34)

14



where pé 2 is the corrected value of Py o¢ thus giving a corrected diffuser pres-
sure ratid -

/p! (35)

The corrected pressure difference can be expressed as

v - [ -
fpL = Py o " Py,q (36)

The ratio of Ap! to Apt defines a correction factor Kye From equations (29),
(32), (35), and (36), it follows that

1 L] - Ty - -
_Mpr PLp TPy, (WEy) - 1 - (/ky)
%% " ,-p , (ra-1- 't -1 (37)
t t,2 t,1 H H
Because k, is slightly greater than 1, let
1
= 1 - ¢ (38)
H
Substituting equations (33) and (38) into (37) gives
Ap!
L £ =
- 'TE T (39)

for values of M > 0.6. Correction factor Ky equals 1.0 for M < 0.6. The com~
putations of ¢, §, and Ky from the data of figure 3 are summarized in table I. A
second-degree polynomial, fit to the values of KH obtained as a function of M

for M > 0.6, is

K, = 1.0 + 1.375(1 - 0.6)2 (40)

TABLE I.~ CORRECTION FACTOR OF DIFFUSER PRESSURE RATIO

M | rg 8 Ky € Ky = 1.0 + (&/8) | Ky ~ 1.0 + 1.375(M - 0.6)2
0.6 | 1.025 | 0.025 | 1.0 0 1.00 1.00

.8 | 1.042 | .042 1.0029 | .0029 1.07 1.06

.9 | 1.052{ .052| 1.0076 | .0076 1.15 1.12
1.0 | 1.061 | .061| 1.0132 | .0132 1.22 1.22

15



which is tabulated in the final column of table I. Thus, py is computed empiri-
cally by the relation obtained from equations (31), (36), and (37) as

X

¥-1 2
_ y-1.2 - 1 [kl
Apé = 1&191 (1 + > M) 1 (1 AR) (0.075 + 5.88 R1 (41)

where KH is obtained from equation (40).

The value of 6*/R is required as a function of Mach number M and Reynolds
number Npe* Shapiro (ref- 12) obtains 6*/6 as a function of M where 61 is
defined as the momentum thickness of the boundary layer entering the diffuser. A
curve of &*%/6 as a function of M, denoted by fZ(M)’ is shown in figure 4 for
values of M 1lying between 0 and 1.2. Rao (ref. 9) estimates 91 by the relation

TS (42)

2.0 r

1.9

*
1.8

i
~

—
o

Flow-loss relation, f2

L5

1.4

1.3

1.2 ] 1 1 1 ] 1
0 .2 .4 .6 .8 1.0 1.2 1.4

Mach number

Figure 4.- Variation of £, with Mach number.
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where Lng is the test-section length and CD is the drag coefficient for turbulent
flow past an insulated flat plate. Shapiro (ref. 12) gives Cp as a function of
Mach number and Reynolds number as

-2 -0.467

c, = 0.472(log N ) 584 4+ 0.2m2) (43)

D

An expression for &% as a function of Mach number and Reynolds number can be
obtained as

o* = 01 fz(M) = K6 f3(M) (44)
where

Kg = 0.472(log, o Np ) o o0 2%5 (45)
and

£,M) = (1 + 0.24%)70+ 487 £ ) (46)
values for fz(M) and f3(M) are given in table II and appear as curves in fig-
ures 4 and 5. A second-degree polynomial fit to f3(M), denoted by f4(M) and
tabulated in the rightmost column of table II, is

£,(M) = 1.286 + 0.305M> (47)

The curves for f3(M) and £,(M) coincide in figure 5.

TABLE II.-~ FLOW-LOSS RELATIONS AS FUNCTIONS OF MACH NUMBER

M fz(M) f3(M) f4(M)
0 1.286 1.286 1.286
.2 1.304 1.299 1,298
4 1.358 1.338 1.335
.6 1.447 1.401 1.396
.8 1.573 1.487 1.481
1.0 1.734 1.593 1.591
1.2 1,930 1.715 1.725

17



.98 —
o 98T 5* 2,-0.467 ’p
5 fg = 7 (1.0 + 0.2M%) e
(3]

| /

o 94 e
W 7/
8 1.286 + 0.305M2 e
"C:d" 99 |- f4 = 1. + U, 5M 'x
o A
~ 7
w Vd
8 7
~ .90 /D/
2 P
2 -
= ,/E}'

.88 — ___——D”

.86 | | | | | L |

0 .2 A4 .6 .8 1.0 1.2 1.4

Mach number

Figure 5.- Variation of f3 and f4 with Mach number.

For the second- and third-leg diffusers and the rapid diffuser in the NTF, Raoc
(ref. 9) obtains a constant diffuser loss factor K of 0.32. 1In these locations,
equation (31) simplifies to

-

-1 2\7? 1 \?
Ap. = 0.32p. |11 + X="m - b - — (48)
t 1 2 A

The portion of the fan nacelle beyond the fan location is an annular diffuser whose
total-pressure loss is computed by Rao for a constant drag coefficient C, to be

2
boy = CD<§ pu) (49)

where CD = 0.158.

Losses at turning vanes, cooling coils, and screens are also obtained by using
equation (49), where values of Cp are given as follows:

18
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Location of loss CD
Turning vanes 0.027
Cooling coils 12.0
Screens 3.0

Pressure loss at the strut, also obtained from equation (49), is weighted by the

ratio of projected strut frontal area Ay to test-section cross-sectional area Aq.
thus giving

A
S 2
fpg = Cp A—(E P“) (50)

where CD = 0.027. Pressure losses due to the model and sting are computed similarly
as a function of angle of attack.

In each aforementioned case, the total-pressure loss at each diffuser or con-
stricting element is uniformly distributed along its length to obtain a value for

(dp,/dx)p to be used in equation (28).

SLOTTED~-TEST-SECTION DYNAMICS

The flow processes occurring within the slotted test section and plenum of a
transonic wind tunnel are not understood well enough to permit construction of an
accurate dynamic model. It is clear that the process is asymmetric and three-—
dimensional with sharp gradients and finely detailed flow patterns. 2An adequate
time-dependent model would require a three-dimensional analysis with a finely spaced
grid, which would require lengthy execution on a high-performance digital computer
for solution. Such an analysis has not been attempted in the literature as of this
writing.

In this study, a one-dimensional approximation to slotted-test-section dynamics
is adapted from a lumped model of the NTF slotted-test-section dynamics developed by
Gumas. (See ref. 13.) The test section is divided into an exit region (from which
slot flow exits into the plenum) which is followed by a reentry region (where flow
reenters the test section from the plenum). Slot exit flow is considered by Gumas
to consist of three components caused by boundary layer, model blockage, and super-
sonic effects. ILet the lumped exit and reentry mass flows of Gumas be distributed
along their corresponding regions. The plenum is considered to be a lumped volume
with static plenum pressure uniformly distributed along the exit and reentry regions
of the test section, in contrast to the treatment by Gumas of the test-section—
Plenum combination as a single lumped volume at uniform pressure. This separation of
a lumped plenum from a distributed test section introduces another component of slot
mass flow proportional to the difference in static pressure between test section and
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plenum not included in the formalation of reference 13. The performance of the model
for the subsonic case using these assumptions is satisfactory; however, above
Mach 1.0 it is less successful, having a tendency toward numerical instability.

«————— Test section ————»

Throat L Strut J Diffuser

YEX

Plenum

Figure 6.— Slotted test section and plenum.

A diagram of the throat, test section, and plenum regions appears in figure 6.
Let g denote slot exit (test section to plenum) mass flow which, as mentioned
before, according to the Gumas model consists of three components:

(1) The boundary-layer component proportional to throat flow:

¥s = CxuVern (51)

(2) The model-blockage component, also proportional to throat flow and dependent on
angle of attack:

w =C w (52)
DM DMX TH

(3) The supersonic component, when MTS > 1.0:

3 M
5) TS -
W = (— - p,A (53)
Ss 6 (1 + 0-2M,§S)3 tT RTt
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where

W, average test-section mass-flow rate in throat region

TH
MTS average test-section Mach number in throat region
Pe total pressure
T, total temperature
An test-section cross—sectional area at throat
CXM boundary-~layer flow coefficient
CDMX variable model-blockage flow coefficient
The additional pressure-difference flow component w,.. is computed as
worr = Corr(Prs -~ Ppr) (54)
where
ETS average static pressure over exit-reentry portion of test section
Ppy, plenum static pressure
CORF slot (plenum test-section) pressure-difference flow coefficient
Total slot-exit flow W is then
Yg = g * ¥om ¥ ¥ss * Yorr (55)

Note that if the plenum pressure is sufficiently greater than the test-section static

pressure, W will be negative. Slot exit momentum flow jE and heat-enerqy flow
qp are obtained from Wp as
wEuTS (wE > 0)
3 = (56)
<0
0 (wE )

where Ung is the average test-section stream velocity in the exit region and

EhTS (wE >0
qE = (57)
wEhPL | (wE < 0)
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where

h =c ' (58)

h. =cT ' (59)

and Ty is the plenum temperature.

Reentry mass flow w is computed from two components: (1) An extracted
component proportional to test-section exit flow

w_ = =-C_w (60)

where Yy is the average test-section mass flow in the reentry region; and (2) the
pressure-difference flow component wgpn. Hence, total reentry flow wpp is

(61)

Reentry momentum flow and energy flow are treated analogously in regard to slot-exit
flow. The dynamic state egquations for plenum mass and internal energy, respectively,

are

Mpp = Wp + Wpg (62)
and

[ ] - +

Bpr = 9% * g (63)
where

wREhPL ‘ (wRE < 0)
xe w__h (w > 0) (64)
RE TS RE

Plenum temperature Tpp is given by

T =E__/cm (65)
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BOUNDARY CONDITIONS
GN,, Venting and LN, Injection
Next, consider the external mass, momentum, and energy transfer caused by gas
venting and liquid-nitrogen injection. Let the vented-gas mass—-flow rate be denoted

by Wg, and let the influent mass-flow rate per unit length be mé. Assume uniform

venting over length Lg =o that mé is given by

mé = -wg/LG ' (66)

The influent momentum~flow rate per unit length jé is then

L T ] = o
3 meu wGu/LG (67)
where u 1is the local stream velocity at the vent.
Finally, the influent heat~flow rate per unit length qé is
v = ] =
qaz mGhG wGhG/LG (68)
where hG’ the local total enthalpy, is given by

hg = ¢ T + 3 u (69)

Corresponding equations for liquid-nitrogen injection can be obtained. Iet Y
denote LNz—injection flow rate (in kilograms per second) occurring uniformly over
length LN' Influent mass-flow rate per unit length denoted by mﬁ is then

m& = wN/LN (70)

Because the injected liquid nitrogen is assumed to have zero stream velocity at the

point of injection, influent momentum-flow rate per unit length jﬁ is

il =0 (71)

Finally, influent energy per unit length is given by

YNy

T = My T o (72)

where hN is the total enthalpy of liquid nitrogen. The value used for hN is
-115.9 kJ/kg. Instantaneous vaporization and perfect mixing are assumed.
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NTF-Fan Simulation

A one-dimensional approximation to the NTF fan-flow process has been adapted by
Gumas (ref. 13) from a three-dimensional fan model. In the approximation by Gumas,
fan volumes are assumed to be insignificant relative to the tunnel volume; mass,
momentum, and energy relations between fan-inlet flow and fan-outlet flow are assumed
to be algebraic functions dependent on fan speed v and inlet-guide-vane position
a. Thus, the fan model has no intrinsic dynamics. Inlet-guide-vane actuator
dynamics are modeled as a second-order linear dynamical system. Fan-drive dynamics
are not included in the present model because constant fan speed is assumed.

The functional relations between fan-inlet and fan-outlet flows established by
the Gumas fan model establish the relation between the outlet and inlet flows of the
closed-return wind tunnel. This can be represented formally as a vector-function
equation. In this solution, let V denote the vector of three independent flow

properties

V = | puw (73)

where subscripts 1 and N denote tunnel inlet and tunnel outlet, respectively.
Also, let G be the vector function representing fan-outlet flow as a function of
fan-inlet flow, fan speed, and inlet-guide-vane position. Then, the relation
between V (the vector of tunnel-inlet flow properties) and VN (the vector of
tunnel-outlet flow properties) is expressed by

V1 = G(VN,a,v) (74)

The relationships symbolized by vector function G and its inverse ¢! determine

the boundary conditions at the ends of the one-dimensional tube. Functions G and
G~ 1 are evaluated numerically by means of a computer subroutine.

NUMERICAL SOLUTION OF FLOW EQUATIONS

Equations (8), (16), and (18) are solved numerically to obtain a time-dependent
solution of the wind-tunnel flow process. For notational convenience, these
equations are written in conservation form as

0 0 —
6t vV(x,t) + 5— F(x,t) + H(x,t) =0 (75)
where
puw
w?e + m-—-é Su
F = P b Hw == ™ (76)
oT 4 du

+ - —— - — —_—
e, puw + puw kw % 3 puw %
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and
w-m?

dw .
H=|-p - j' (77)

—q'

A second-order explicit predictor-corrector method developed by MacCormack
(ref. 14) is employed to obtain a numerical solution to equation (75). In this
method, let the length of the tube be divided into N equal segments of length Ax
and let At denote the time increment at the time step 1i. ILet the diacritical
marks ~ and ~ denote predicted and corrected values, respectively, of the
variables. Let subscript n denote the values of the variables at station x
where

n

X =n M (n =0, «.., W) (78)

and let superscript k denote the values of variables at time t, where

k
t, = E At (k =0, 1, 2, «v.) (79)
i=1

so that the predicted wvalue is
vE = V(x,t,) (80)
n n’ "k
and the corrected value is
vE = V(x,t) (81)
n n’-k

MacCormack's method (ref. 14) proceeds as follows for n = 2, 3, ..., N=-1:

(1) Predictor step:

n

{PS“ = vk - <Fk - F§_1)21\-§ + 5| At (82)

(2) Corrector step:

ok+1 _ ok _ ok+1 _ Tk+1}1 k+1
Vn =V (%n+1 Fa )Z§'+ Hy At (83)
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(3) Update step:
VJ;+1 - %({;};ﬂ + {;11§+1) (84)

Because partial derivatives occur in vector function F, additional differencing
is necessary within F§ and Fn. In MacCormack's formulation, these derivatives are
written, respectively, as

~ —
Ph%%n
k pu2+p -ﬁu(u - u o
Fn = n n n 3 n+1 n'Ax| n (85a)
e u + u - k(T T )1— -4 (u u )1
t,npn n pn n n+1 n’ Ax 3 H n+1 n'Ax wij
and
r Pnun Wn
~k ~ 2 x4 ~ 1
F o= [?nun + Py =3 wlu, - un-1)K§]wn (85b)

o~ ~ o~ ~~_ ~-~ 1--4_ ~-~ 1
[}t,npnun * Ppuy ~ KTy - Toq)ax - 3 vy, un—1)E§]wn

L J

The wind tunnel is a closed-return tube driven by a fan. As discussed previ-
ously, the fan is represented by a vector-function relation G between vectors A\
and V4 so that

V1 = G(VN) (86)

From stations Xy to Xqs the predictor-corrector steps are the following:

(1) Predictor step:
Jk+1 _ ok _ k _ gk 1 k
VN = VN (FN FN— 1)3; + H'N At (87)

§k+1

; (88)

I
@
2
2
hA
N—
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(2) Corrector step:

v = vk - (F]2{+1 - F]:‘”)-A; + BF1) At (89)

(3) Update step:

1

LA %((?1‘” + §k+1> (90)

V];H i G—1(VJ1<+1> (01)

where G-1 denotes the inverse of vector function G.

The time increment At is recomputed after each time step with the relation

0.9 Ax

At = (92)
max (jul + a)

where a is the local speed of sound and max denotes maximum wvalue.

Above a Mach number of 1.0, shocks form in the test section and produce rapid
numerical changes which can lead to computational instability. Artificial viscosity
is introduced into the computation to smooth the shock discontinuity to a continuous
change over several spatial increments. In the present treatment, an artificial-
viscosity computation method furnished by Turkel (ref. 15) is used. In this method,
the following functions of time step k and spatial index n are defined as

c. Atk
Ck =X ' (93)
T Ax
k k k
du,n un+1 un (94)

pk = —v]:l ' (95)

kK kX k
PV,n - cgdh,nDV,n (96)

The artificial-viscosity vector U§+1, given by

+1 _ x x
Uﬁ - PV,n PV,n--1 (97)
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is added to the updated state vector Vk+1, given in equation (84), to yield the
smoothed state vector n

(V§H> = V];H + gt (n =2, «co, N-1) (98),
S

n

No smoothing is done at stations x4 and =xy-

The aforementioned numerical application of MacCormack's predictor-corrector
method has been implemented on a CDC CYBER 203 digital computer. (See ref. 4 by
Tambiotte and Howser.) Vector equations (82) and (84) are well-suited for vectoriza-
tion on this computer because each vector-addition and vector-multiplication opera-
tion is performed by a single machine instruction for vectors of lengths up to
64 000 elements. For the NTF model, the x~coordinate is divided into 512 segments.

Because each of the three elements of vector vi for n = 2 through 511 in equa-

tions (82) through (84) undergoes the same arithmetic operation, a single machine
instruction is sufficient to perform the arithmetic operation on the entire set of
1530 elements referenced in vectors V through Vgq1* Separate operations are
needed at stations 1 and 512 as given in equations (86) through (91). However, the
elimination of 1530 separate addition or multiplication instructions for each vector
addition or multiplication operation in equations (82) through (84), along with loop-
control instructions, results in a significant reduction in computing time.

The proportion of scalar to vector operations in a program determines the extent
of speedup over a serial program. Because the solution of the basic equations of
flow is highly vectorized, a speedup factor of 50 to 60 is realized for the portion
of the program corresponding to equations (82) through (84). However, because simu-
lation of the actuator and feedback-control dynamics used in the present study is not
vectorizable, inclusion of those features results in a larger proportion of nonvector
operations. The complete simulation, including actuators and controls, requires an
average 0.006 sec of machine execution time per simulated time step At. The value
of A is 0.295 m. From equation (92), it follows that

0.266
At = (99)

max (lul + a)

A typical value of At at a Mach number of 0.8 and total temperature of 333 X is
0.0004 sec. Thus, simulation of 1 sec of tunnel-control dynamics requires approxi-
mately 15 sec on the central processing unit (CPU). At lower Mach numbers and tem-
peratures, At becomes larger. For example, at a Mach number of 0.8 and tempera-
ture of 167 K, At is 0.0005, and 12 CPU sec are required for each simulated tunnel
second. In simulations of the Langley 0.3-Meter Transonic Cryogenic Tunnel, 256 seg-
ments were used, which reduced execution times by a factor of 4 over that required
for simulation of the NTF wind tunnel.

INITIAL CONDITIONS

Initial steady-flow conditions are obtained by integration of the steady-flow
equations (A1) through (A3) of the appendix with an Adams method. (See ref. 16 by
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Hindmarsh.) Generally, some combination of steady-flow initial values of Mach num-
ber, total temperature, and total pressure at the test section are desired. However,
values of state variables can be specified only at the tunnel inlet, along with
GNy-vent flow rate wg and LN,-injection flow rate wy. At steady flow it is seen
that Wo must equal Wiy Furthermore, the values of Vg and wy must be such that
fan work added to the enthalpies removed by LN, injection and GN, venting equals
zero. Thus, values of tunnel-inlet state variables must be selected which will pro-

duce a tunnel energy balance and the required values of M, T., and p; in the test
section.

It is convenient to employ T, as an indicator of energy balance at the fan.
It can be shown that for steady flow, T, remains constant along the tunnel circuit
except at the LN, spray bar and across the fan. Fan-outlet total temperature is

given by
-1
(rF LA 1 Tt N
= 4 100
Tt'F P + Tt’N ( )
¥
where
e fan compression ratio
NG fan efficiency
Tt,N fan-inlet total temperature

Because " is known and rp is computed from the ratio of total pressures
= 101
e = P, 1Pe,n (101)

where Py, N denotes tunnel-outlet total pressure and p,. 1 denotes tunnel~-inlet
total pressure, Ty g ©an be computed from the integrateé solution of equations (A1)
through (A3). Thus, a procedure for obtaining initial conditions is as follows:
(1) Select values of Prr Uqr € 4 and Wei (2) integrate equations (A1) through

’ .
(A3); and (3) compute MTS' Pg,Tgr Tt,TS' and _Tt,F' Since, at steady flow,
must egual Tt,1' by means of some type of organized search procedure, such as a
gradient method, update P1r Uqr e¢,qr and wg and iterate until Tt,F equals
Te, 1 and Myg, P¢,Ts’ and Tt,TS equal the required values.

T, F

SIMULATION STUDIES
The ILangley 0.3-Meter Transonic Cryogenic Tunnel

The Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) has previously been
simulated by means of a hybrid dynamic model by Thibodeaux and Balakrishna. (See
ref. 17.) Although the scales and dynamic time constants of the NTF and 0.3-m TCT
facilities differ by an order of magnitude, Mach number, temperature, and pressure
ranges are comparable. Table III lists parameters for the 0.3-m TCT and the NTF.
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TABLE III.- PARAMETERS FOR THE 0.3-m TCT AND THE NTF WIND TUNNEL

Wind tunnel
Parameter
0+.3~-m TCT NTF
Test-section area, m2 cccocne 0.124 6.25
Tunnel circuit length, m ... 21.7 151.2
Tunnel volume, M~ .ccicevsoss 14 5597
Plenum volume, M~ sececscssoe 0.680 207
Mass of liner, Kg eccescecsas 3200 465 000
Temperature range, K ¢ceesee 80 to 325 78 to 340
Pressure range, atm ecceceess 1.1 to 6.0 1.0 to S.0
Mach number range sceececeeseces 0.2 to 0.98 0.2 to 1.2
Maximum Reynolds number
PEr 0.25 M sevenennsoonnns 90 x 108 120 x 10°®
Circuit time, sec:
M=1, T =300K ¢cecsescs 0.6 4.8
M=0.2, T= 100 K scsces 3.0 24

Furthermore, the basic circuit geometries are similar, boundary interfaces are of the
same type, and the fans, GN, vents, and LN2 spray bars are in the same relative posi-
tions in the 0.3-m TCT (fig. 7) and in the NTF wind tunnel (fig. 1). Because of
reduced computer execution times required for the smaller 0.3-m TCT, preliminary sim-
ulation studies were performed using 0.3-m parameters and a simplified fan repre-
sentation in the model. Some typical results of these studies are now described.

GN2 vent LN2 injection

Test section
\ Drive

motor

Flow

- | — ]

Fan section
an “]

Figure 7.- Schematic diagram of Langley 0.3-Meter Transonic Cryogenic Tunnel.

Pulsed upsets of 3-sec duration in fan compression ratio, GN,-vent flow rate,
and IN,-injection flow rate from steady-flow conditions have been simulated. Because
fan drive and valve actuator dynamics were not included in this 0.3-m simulation,
these upsets are represented as idealized rectangular pulses, which result in the
flow responses shown in figures 8, 9, and 10. Computed responses to a 3-sec pulsed
decrement in fan compression ratio appear in figure 8 at 277 X, 5 atm, and Mach 0.69.
The computed responses, which show temporary decreases in total temperature, total
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Figure 8.- Computed response of 0.3-m TCT to fan compression-ratio upset.
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pressure, and Mach number, are very nearly rectangular because of the omission of
actuator dynamics. Figure 9 contains the computed responses to a 3-sec pulsed incre-
ment in GNz-vent flow at 277 X, 5 atm, and Mach 0.7. :

Figure 10 shows the computed responses to a 3-sec pulsed increment in LN, flow
at approximately 224 K, 2.1 atm, and Mach 0.67. These responses show an initial
rapid decrease in total temperature followed by a slower recovery. Total pressures
exhibit a very small initial drop followed by a sizable increase. Mach numbers show
a pulsed increment during the LN2 pulse followed by quick recovery to the original
value. The computed temperature response exhibits temperature fronts which propagate
at stream velocity as predicted theoretically. Temperature fronts were not observed
experimentally in the 0.3-m TCT in tests which employed thermocouple temperature
transducers with time constants of approximately 0.5 to 1.0 sec. Additional tests
employing faster-response thermocouples are planned as of this writing.

The computed temperature fronts decay after 3 to 4 tunnel circuit times because
of heat transfer between the gas and the tunnel liner. Without gas-to-liner heat
transfer, the amplitude of the steps would not be attenuated with time.

Temperature fronts have been observed experimentally in the T'2 cryogenic wind
tunnel at the Toulouse Research Center, Toulouse, France. (See ref. 2 by Blanchard,
Dor, and Breil.) The fronts seen at Toulouse, induced by a step change of -36 per-
cent in LN, flow, were observed to propagate at stream velocity. They had decayed
after two tunnel circuits, and the leading edges had become longitudinally diffuse
near the end of their existence. Analytic solutions of the flow equations predict
such temperature fronts, confirming the numerical result. Determination of their
existence in the NTF must await experimentation after its completion.

NTF Actuator, Sensor, and Control Studies

The mechanical actuators for GN,-vent valves, LN2—inlet valves, and inlet guide
vanes in the NTF have been modeled by Gumas (ref. 13) as second-order linear systems.
Valve stroke-flow calibrations have been provided as functions of local stagnation,
supply, and vent pressures. Also, two types of high-accuracy pressure transducers
were dynamically modeled by Gumas: a sonar mercury manometer and a quartz bourdon-
tube transducer. Both systems have dynamic-response times of several seconds. Tem~
perature transducers are modeled as first-order linear systems with time constants of

0.63 sec.

Three discrete sampled-data feedback control loops of the proportional-integral
(PI) type with variable feedback gains for controlling stagnation pressure, stagna-
tion temperature, and Mach number in the NTF were developed by Gumas. Stagnation
pressure is regulated by a GN,-vent-valve control loop; stagnation temperature, by
an ILN.~inlet-valve control loop; and Mach number, by a fan inlet-guide-vane control
loop. Nominal sampling-time increments are 0.1 sec for the pressure and Mach number
control loops and 0.04 sec for the temperature control loop.

The Gumas simulations of actuators, transducers, and feedback controls have been
appended to the distributed-parameter NTF model. In order for the computations to
be synchronized, the ordinary differential equations describing actuator dynamics are
solved with simple Euler integration for a time step Ati equal to that of the
MacCormack method (ref. 14) for solving the partial differential equations. The
small value of Ati ensures adequate accuracy.
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A large number of experimental simulation studies have been performed to eval-
uate the performance of the Gumas control laws at selected values of Mach number,
temperature, and pressure. Typical runs simulate programmed set-point changes under
automatic control in Mach number, total temperature, and total pressure with the
other two variables fixed. Performance criteria, which require minimum settling time
for the controlled variable and minimum upset in the fixed variables, may thus be
tested. Figures 11 through 14 show simulated results for selected test cases. Fig-
ure 11 shows a controlled Mach number change from 0.8 to 0.9 at 2.04 atm and
333.3 K. The Mach number set-point command occurs at 5 sec; the settling time to a
Mach number of 0.900 is approximately 15 sec. Upsets in p, at T, are minimal,
less than 0.0013 atm and 0.167 K, respectively. Computed time histories of sensed
test-section Mach number, total temperature, total pressure, inlet-guide-vane
position, LN,-valve position, and GN,-valve position are shown.

Figures 12 and 13 illustrate a controlled temperature transition from 166.7 K to
178.9 K for a Mach number of 0.8 at 2.04 atm. The temperature set-point command
occurs at 5 sec, and the transition time is approximately 37 sec. Figure 12 contains
actuator positions for guide-vane angle, LN2, and GN2, along with test-section Mach
number, total pressure, and total temperature, the latter exhibiting well-defined
temperature fronts. Pressure variation during the temperature transition is less
than 0.0013 atm; Mach number variation is less than 0.004. Figure 13 shows the prop-
agation of the temperature fronts, moving at stream velocity, at five stations along
the NTF circuit. The fronts decay within six tunnel circuit times.

Figure 14 shows a controlled pressure transition from 2.04 to 1.85 atm for a
Mach number of 0.6 at 166.7 K. The pressure set-point command occurs at 5 sec. The
pressure transition time is approximately 7 sec; however, Mach number and temperature
disturbances require 11- and 13-sec settling times, respectively. It is seen that a
significant temperature pulse of -3.3-K amplitude and 13-sec duration is introduced
by the controlled pressure transition. Likewise, a Mach number upset of 0.010 ampli-
tude occurs. Thus, although the Mach number and temperature control loops, which
regulate inlet-guide-vane positions and LN_-~inlet-valve position, do not appreciably
interact with the GN2 control loop, the latter control loop interacts significantly’
with the other two loops in regulating the vent-valve position.

The simulated effects of a hypothetical guide-vane upset on steady controlled
flow in the NTF are seen in figure 15. A 2.5° step pulse in inlet-guide=-vane posi-
tion of 2-sec duration is applied with Mach number controls fixed but temperature and
pressure controls active. A significant Mach number transient results which decays
after 10 sec. However, a train of temperature-impulsive disturbances of 2-K to 3-K
amplitude is established which does not decay with time. It can be seen from the
valve-position records that the reaction of the controls to the temperature impulses
tends to reinforce and maintain their existence. This test case demonstrates the
need for the carefully programmed Mach number transition control which was designed
into the actual NTF control system.

The effect of control-loop sampling rate on control performance was investigated
in a series of simulations. The nominal values of the sampling intervals quoted
previously were determined to be the largest values allowable for acceptable per-
formance. Longer sampling intervals were found to cause slower control response,
increased overshoot, and excessive oscillation. Sampling intervals of 0.5 sec or
greater caused the control loops to become unstable.

In a study by Armstrong and Tripp (ref. 18), multivariable-design techniques are
applied to Mach number control of the NTF wind tunnel. 1In particular, optimal
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Figure 11.- Simulation of controlled Mach number as predicted by NTF model.
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linear-regulator theory and eigenvalue~placement theory are employed to develop Mach
number control laws, which are evaluated by using the distributed-parameter simula-
tion described herein with actuator dynamics included. The resulting Mach number
control law is found to reduce settling time significantly over that achieved by a
conventional proportional-integral control loop. Details of the performance compari-
sons described here appear in reference 18.

CONCLUDING REMARKS

The three~dimensional equations of fluid flow in integral form have been applied
to a differential element of a one-dimensional tube of varying cross-—sectional area.
Heat-transfer effects due to thermal conductivity and viscous terms have been intro-
duced to derive a one-dimensional system of partial differential equations analogous
to the three-dimensional Navier-Stokes equations, which were applied to wind-tunnel
geometry. The increase in entropy along the length of the tube was seen to be caused
by a viscous momentum loss. This momentum loss, manifested as a loss in total pres-
sure, was quantified from empirical pressure-loss relations obtained for diffusers,
turning vanes, screens, and cooling coils in the National Transonic Facility (NTF)
wind tunnel at the Langley Research Center. The cryogenic wind tunnels to be modeled
contain a slotted test section whose analysis is based on a lumped model wherein the
plenum is represented as a lumped volume. The model is extended by separating the
lumped plenum from the distributed test section and by distributing slot flow and the
test-section length.

The NTF and the Langley 0.3-Meter Transonic Cryogenic Tunnel are simulated by
means of this model. A one-dimensional model of the fan adapted from a three-
dimensional fan model is employed to relate the inlet-outlet values of mass, momen-
tum, and energy flow rates in the one~dimensional tube. Fan compression ratio,
determined by fan speed and an inlet-guide-vane system, establishes Mach number.
Temperature control is effected by means of a liquid-nitrogen inlet spray bar and
control valve. Pressure is maintained by a vent control valve. Inlet-guide-vane
and control-valve actuators are modeled as second-order linear systems.

The partial differential equations of the distributed parameter model are solved
numerically by using an explicit, second-order, finite-difference, predictor-
corrector method. The lumped ordinary differential equations describing actuator and
control dynamics are solved by simple Euler integration synchronized with the finite-
difference computation.

The model has been employed in the development of multivariable control tech-
niques based on optimal-regulator theory and eigenvalue-placement theory. (See
NASA TP-1887.) It has been employed extensively in the development of digital-
process control algorithms for controlling Mach number, total pressure, and total
temperature in the NTF wind tunnel.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 6, 1983
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The differential equations for one-~dimensional steady flow are

Equations

and

Total enthalpy ht

where e

or

d p— 1]
dx(puuo) =m

dx

g—(e uw + ) =
ax otP puw

(A1) and (A2) can

APPENDIX

SOME STEADY-FLOW RELATIONSHIPS

d 2 dw .
— + = —_— 4 1
{pu w + pw) P 3 J

q

be written, respectively, as

du  udp_ _udw m

dx p dx w dx pw

gdu, 1d _ 3" - um’
dx p dx pw

is the internal energy per unit mass.

d = 1
E;(htpuw) = q

is defined as

For an ideal gas, the total enthalpy can be written as
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(a1)

(n2)
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APPENDIX

With substitution of equation (A9), equation (A8) can be written as

2 q' - hm'
udp _udp ,y=-1pu du_y-1 t (a10)
pdx pdx Y p dx Y pw
This expression can be substituted into equation (2A4) to yield
du u dp __wdw y=-1(, 1 2, v
dx+ypdx— wdx+ o~ (q +5um uj (a11)

Equations (A5) and (A11) are solved simultaneously to eliminate du/dx so that

2 2
_.1.&.22__.&1_@ 1, - ' _Y_—_‘I_BE ' l 2, _ st
<1 Y p >dx o dx + w(]' um') 5 o q' + 5 u'm uj (A12)

It is desired to obtain a steady-flow expression for the gradient of total pressure

dpt/dx in terms of m', 3j', and g'. Equation (A12) will be found to be useful to
that end. The defining equation for Py is

2\""
= pu_
Py p(1 + b o ) (a13)

where

- x-1
b 2y (A14)
Differentiation of equations (A2) and (A13) and considerable manipulation yield
A
dp 2\ 2 ., 2
—t=1(1 + b & R = = e K <L (A15)
ax 2 p y p/dx w W ax

2
One may substitute equation (A12) into equation (A15) to eliminate (1 - % 9%—)%& so
that

1

Y-1

dp 2 2 '

__t = l<1 + b .&) (2 + y-1 &)jl Loum Ll .92<q| + _1.. u2ml) (A16)
dx 2 P w Y pw 2
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Finally, note that

p e _y=1,2 (A17)

so that equation (A16) becomes

X S

y-1 v-1
—t_21 Y- 1,2 . J.(L-_12 ' 20 4 1,2
—-(DG + > M ) j o 1 + > M um' + (y 1M \q' + > U m' (A18)
Thus, dpt/dx is a linear function of m', 3j', and q'.

Now, obtain an expression for the gradient of entropy ds/dx for steady flow.
Differentiate equation (A6) to obtain

ah
t_Ge, 4, _d  du (A19)

dx dx P dx dx dx

By the second law of thermodynamics, the differentials de, ds, and dv for a pure
substance are related as

de =T ds - p dv (A20)
Substitution of equation (A20) into egquation (A19) gives

dh
—t ds dp du
ax + 7T ax + v ax + u ax (A21)

Expressions for dht/dx and u du + v QE are obtained from equations (A5) and (A9).
Substitution of these expressions into equation (A21) gives

d—s _ l uml - jl
dx T( pw M puw ) (A22)

Equation (A22) may be rewritten as
2
d_s=—R— (11__ h)m' -uj' +q' (a23)
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